ROBOTIS Manipulator SDK User Manual

Contents

1. Introduction

1.1	About this document	3
1.2	Safety	4
1.3	Package Contents	5
1.4	Layout	6
1.5	Specification	9
1.6	D-H Configuration 1	11
1.7	Home Position of Robotis Manipulator 1	12

2. Getting Started

2.1	Prerequisites	13
2.2	Preparation	14
2.3	Installation of Manipulator	16
2.4	USB2Dynamixel Setting	-18
2.5	Manipulator Test on DynamixeWizard	19
2.6	How to use Robotis Manipulatoe SDK	28

3. Example

3.1	ArmMonitor	30
3.2	SimplePtoP	46
3.3	SimpleIK	50
3.4	SimpleTorqueOnOffandFK	59

4. Robotis Manipulator SDK Programming

4.1	Robotis Manipulator SDK Flowchart	63
4.2	Description for Robotis Manipulator SDK	64

5. Maintenance

5.1	Restore	Firmware	 69)
5.1	Restore	Firmware	 6	59

6. Reference

6.1	ARMSDK_Define	73
6.2	ARMSDK_Math	74
6.3	MotionEngine	75
6.4	RobotisLib	92
6.5	Timer	97

1. Introduction

ROBOTE

1.1 About this document

- i) This manual applies to the Dynamixel PRO-based Robotis Manipulator.
- ii) All parameters in this manual are based on default values.
- iii) The manipulator's configuration is provided. The ArmSDK is based on Windows7 and Visual Studio 2010.
- iv) It is strongly recommended with proficiency with Dynamixel PRO and C++.
- v) The units utilized in the ArmSDK are in radians (rad) and millimeters (mm).
- vi) Modifying the wiring and components or performances not stated on this guide may result on adverse operations.

This manual utilizes the term "arm," "manipulator," and "robot" interchangeably to describe product. The guide also may refer to Dynamixel Pro actuators to simply "Dynamixel," "servo," "motor," or "actuator."

(last updated 5 November, 2014)

1.2 Safety

DANGER!

Information appearing in a DANGER concerns the protection of personnel from the immediate and imminent hazards that, if not avoided, will result in immediate, serious personal injury or loss of life in addition to equipment damage.

- Keep away from the robot while its moving..
- Do not touch with the robot with wet hands.
- Turn off power of the robot whenever robot is problematic.

WARNING!

Information appearing in a WARNING concerns the protection of personnel and equipment from potential hazards that can result in personal injury or loss of life in addition to equipment damage.

- Setup robot in an environment low on dust and humidity.
- The robot must always be attached to the based when powered on.
- The robot wiring must be checked prior to powering on.
- The robot connection to power supply must be check prior to powering on.
- Do not change wiring on Robotis Manipulator while powered on.

CAUTION!

Information appearing in a CAUTION concerns the protection of personnel and equipment, software, and data from hazards that can result in minor personal injury or equipment damage.

- Keep robot's workspace clear of object.
- Ensure wiring is not tangled up on every joint.
- Make sure USB2Dynamixel and PC does not interfere with the robot's moving

1.3 Package Contents

ROBOTIS

Name	Quantity
Manipulator	1
USB2Dyanmixel	1
4P Cable(500mm)	2
Power Cable(1,200mm)	2
4P expansion hub	1
Power expansion hub	1
Gripper(optional)	1
Support(optional)	2
Base Plate(optional)	1
3x8 wrench bolt	20
3x12 wrench bolt	$\overline{20}$

1.4 Layout

[FOR REFERENCE ONLY]

10/06/2014

mm

1 of 1

ii) L Series Manipulator Dimension

- The diagram above illustrates joints 1~6 connected in daisy-chain (serial) configuration with 4P Cable.
- Joint 1 (labeled as "1st") connects to USB2Dynamixel via 4P Cable.
- USB2Dynamixel connects to PC via USB hub.
- Dynamixel Pro is powered from a a power supply via power expansion hub.

- Joints 5 and 6 (model: L42 - 10 - S300 – R) are not separately powered; instead power comes from the same 4P Cable.

- You may obtain more 4P or Power Cables via ROBOTIS or see section 2.2 Preparation - ii) Cable.

1.5 Specification

i) H Series Robotis Manipulator Specification

Item		description	
DOF		6 DOF	
Payload		3kg	
Operating vol	ltage	24V	
	Joint 1	$-\pi(rad) \sim \pi(rad) \rightarrow -251000 \sim 251000$ (pulse)	
	Joint 2	$-\pi(rad) \sim \pi(rad) \rightarrow -251000 \sim 251000$ (pulse)	
Decolution	Joint 3	$-\pi(rad) \sim \pi(rad) \rightarrow -251000 \sim 251000$ (pulse)	
Resolution	Joint 4	$-\pi(rad) \sim \pi(rad) \rightarrow -251000 \sim 251000$ (pulse)	
	Joint 5	$-\pi(rad) \sim \pi(rad) \rightarrow -151875 \sim 151875$ (pulse)	
	Joint 6	$-\pi(rad) \sim \pi(rad) \rightarrow -151875 \sim 151875$ (pulse)	
	Joint 1	U54 200 S500 D	
	Joint 2	H54 - 200 - S500 - K	
Dynamixel Pro	Joint 3	H54 100 \$500 P	
Model Name	Joint 4	H34 - 100 - S300 - K	
	Joint 5	1142 20 S200 B	
	Joint 6	H42 - 20 - 5500 - K	
	Joint 1	$-\pi(rad) \sim \pi(rad)$	
	Joint 2	$-\pi/2(rad) \sim \pi/2(rad)$	
Operating	Joint 3	$-\pi/2(rad) \sim 3\pi/4(rad)$	
Range	Joint 4	$-\pi(rad) \sim \pi(rad)$	
	Joint 5	$-\pi/2(rad) \sim \pi/2(rad)$	
	Joint 6	$-\pi(rad) \sim \pi(rad)$	
Default ID		Joint 1 (ID:1), Joint 2 (ID:2), Joint 3 (ID:3) Joint 4 (ID:4), Joint 5 (ID:5), Joint 6 (ID:6)	
Motor type		Brushless DC Servo(H54 Series) / Coreless DC Motor(H42 Series)	
Position sensor type		Absolute Encoder(for Homing) & Incremental Encoder(for Control)	
communications		RS485	

Item		Description	
DOF		6 DOF	
Payload		1kg	
Operating vol	ltage	24V	
	Joint 1	$-\pi(rad) \sim \pi(rad) \rightarrow -125700 \sim 125700$ (pulse)	
	Joint 2	$-\pi(rad) \sim \pi(rad) \rightarrow -125700 \sim 125700$ (pulse)	
Decolution	Joint 3	$-\pi(rad) \sim \pi(rad) \rightarrow -125700 \sim 125700$ (pulse)	
Resolution	Joint 4	$-\pi(rad) \sim \pi(rad) \rightarrow -144180 \sim 144180$ (pulse)	
	Joint 5	$-\pi$ (rad) ~ π (rad) \rightarrow -2048 ~ 2048 (pulse)	
	Joint 6	$-\pi$ (rad) ~ π (rad) \rightarrow -2048 ~ 2048 (pulse)	
	Joint 1		
	Joint 2	L54 – 50 – S500 - R	
Dynamixel Pro	Joint 3		
Model Name	Joint 4	L54 – 30 – S500 - R	
	Joint 5	L42 10 S200 P	
	Joint 6	L42 - 10 - 3300 - K	
	Joint 1	$-\pi(rad) \sim \pi(rad)$	
	Joint 2	$-\pi/2(rad) \sim \pi/2(rad)$	
Operating	Joint 3	$-\pi/2(rad) \sim 3\pi/4(rad)$	
Range	Joint 4	$-\pi(rad) \sim \pi(rad)$	
	Joint 5	$-\pi/2(rad) \sim \pi/2(rad)$	
	Joint 6	$-\pi(rad) \sim \pi(rad)$	
Default ID		Joint 1 (ID:1), Joint 2 (ID:2), Joint 3 (ID:3) Joint 4 (ID:4), Joint 5 (ID:5), Joint 6 (ID:6)	
Motor type		Brushless DC Servo(L54 Series) / Coreless DC Motor(L42 Series)	
Position sensor type		Absolute Encoder(for Homing) & Incremental Encoder(for Control) * L42 models only contain absolute encoders	
communications		RS485	

ii) L Series Robotis Manipulator Specification

1.6 D-H Configuration

DH Parameter Link No.	Link Length (mm)	Link Twist (rad)	Joint Offset (mm)	Joint Angle (rad)	DXL Angle (rad)
1	0	$-\frac{\pi}{2}$	0	0	0
2	$\frac{265.69}{(\sqrt{264^2+30^2})}$	0	0	0	$\frac{\pi}{2} - \tan^{-1}(\frac{30}{264})$
3	30	$-\frac{\pi}{2}$	0	0	$\frac{\pi}{4} + \tan^{-1}(\frac{30}{264})$
4	0	$\frac{\pi}{2}$	258	0	0
5	0	$\frac{\pi}{2}$	0	0	0
6	0	0	0	0	0

1.7 Home Position of Robotis Manipulator

- The diagram below shows the "home position" of the Dynamixel PROs from Robotis Manipulator.

2. Getting Started

OEOTE

2.1 Prerequisites

 $\rm i\,$) The ArmSDK is based on Window 7 OS and Visual Studio 2010.

ii) The ArmSDK trajectory is generated from the MotionPlay class' instance and utilizes QueryPerformanceCounter. This requires the use of a thread, in which sharing said thread may reach to 100%. It is highly recommended your PC is at least dual-core-based.

- iii) The Numerical IK implements Damped Least Square Method to reach target by acquiring each joint's angle. This allows joints to go from initial position to a point and then return to its initial pose. This will allow you to perform tests to the manipulator.
- iv) Allow sufficient workspace prior to setup by clearing objects in the arm's vicinity.

v) \triangle Always ensure the manipulator is properly fixed to the base plate prior to operations; otherwise arm movements can cause damage and physical injury.

- vi) A supply power to the manipulator after making sure all cables are properly connected. While powered on do not touch the cables as it may cause erroneous operations or/and damage.
- vii) \triangle When handling the manipulator do so carefully as not to have your fingers stuck in the frames.
- viii) 1 If the manipulator operates erroneously quickly cut off power by turning the power supply off.
- ix) \triangle while the manipulator is in operation keep out of its workspace; ensure no objects enter the workspace during operations.

2.2 Preparation

i) Power Supply

The manipulator requires 24V for operations. Ensure the power supply is capable of supplying 24V and 15A or higher.

ii) **4P** Cable

The 4P Cable connects the manipulator and USB2Dynamixel.

4P Cable					
connector	432				
	1	GND			
Din orrow	2	VDD			
F III allay	3	DATA +			
	4	DATA -			
cable					
	Connector specifications				
PCB Header MOLEX 22-03-5045		MOLEX 22-03-5045			
Cable (Housing)	Housing) MOLEX 50-37-5043				
Cable (Terminal) MOLEX 08-70-1039					

iii) Power Cable

The power cable supplies power to the manipulator.

Power Cable				
Connector	1			
Din onnov	1	GND		
Pin array	2	VCC		
Cable		- M		
Connector specifications				
PCB Header	ler MOLEX 39-28-1023			
Cable (Housing)	MOLEX 39-01-2020			
Cable (Terminal)		MOLEX 39-00-0038		

For additional power or 4P cables contact ROBOTIS or obtain them with the specifications listed above.

iv) USB2Dynamixel

The USB2Dynamixel sends ArmSDK commands to the manipulator. Connect the USB2Dynamixel to the PC via USB hub.

2.3 Installation of Manipulator

A The content below is based on an optional base plate and differs from the actual base plate.

- Rest and fix joint 1 of the manipulator.

- The photo on the left is the external wiring for the arm. Label "1" shows a pair of 4P cables and power connector; these connect to joint 1 as shown on the right picture.

- Label "2" shows a 4P connector and 4 power connectors and these connect to the power expansion hub and the 4P cable connects to the extension.

- Once connections are complete fix the arm to the base plate as shown on the photo above. The joint fixed to the plate is joint 1.

- Connect USB2Dynamixel to the hub with 4P cable; connect another port of the 4P hub to the extension.

- \triangle Connect the USB2Dynamixel to the PC via USB hub. The USB hub acts as an isolator to protect the PC from any possible unexpected surges caused by arm action.

1. TTL communications	AX, 3-pin MX; communicate with 3-pin Dynamixel
2. RS485 communications	RX, 4-pin MX and Pro ; communicate with 4-pin Dynamixel.
3. RS232 communications	CM-5and CM-510; communicate with these controllers. Communicate with other RS-232 devices.

The manipulator is based on RS-485 communications so make sure to set the dongle to 485.

. .

2.5 Manipulator Test on Dynamixel Wizard

- Test the arm with Dynamixel Wizard to check for any anomalies. DynamixelWizard is included in RoboPlus suite. RoboPlus can be downloaded from ROBOTIS home page's 'Support -> Downloads.

(do not download RoboPlus v2.0. instead, get RoboPlus v1.0).

			-	LOG-OUT PROFILE	한국어 · ENGLISH · 日本語
ROBOTIS	PRODUCT 제품소개	SUPPORT 기술지원	FORUM COOPERATION SHOP 공지&참여 합력점사업 쇼핑몰		Q,
SUPPORT 기술지원	다운	e-매뉴얼 다운로드 자가진단 A/S접수게시판 동영상가이드		Home	> 기술지원 > 다운로드
	글 수 4	5			
e-매뉴얼	번호	분류 V Go	제목	글쓴이	날짜 조회 수
Ⅰ 다운로드	공지	도면 전제품 도면 자료 (D	아마나믹셀, 바이올로이드, 옵션프레임) 📧	ROBOTIS	2010-07-16 36434
자가진단	공지	드라이버 PC 연결시 문제1	배결 안내 [USB2Dynamixel, CM530, LN101] 🗉 🖬	ROBOTIS	2013-11-22 8140
A/S접수게시판	공지	소프트웨어 OpenCM-IDE	다운로드	ROBOTIS	2013-10-14 8097
동영상 가이드	공지	소프트웨어 : 각 소프트웨어	최신버젼 안내	ROBOTIS	2014-09-05 1525
	42	펌웨어 OpenCM9.04 펌S	비어 때	ROBOTIS	2014-08-07 621
	41	펌웨어 - 다윈미니 소프트워	어 업데이트	ROBOTIS	2014-08-04 519
	40	도면 다윈미니 3d 파일		ROBOTIS	2014-08-04 497
	39	소프트웨어 - 로보플러스 m	.모션 2.0 (v2.1.0) (2014년 7월 14일 업데이트)	ROBOTIS	2014-07-15 1784
	38	소프트웨어 로보플러스 모	션 2.0 (v2.1.0) (2014년 7월 14일 업데이트) 🔳	ROBOTIS	2014-07-15 1578
	37	소프트웨어 로보플러스 vi	1.3.0 (2014년 7월 8일 업데이트)	ROBOTIS	2014-07-08 4569
	36	소프트웨어 로보플러스 디	자인 (v1.1.0)	ROBOTIS	2014-04-10 3192
	35	소프트웨어 로보플러스 모	션 2.0 (v2.0.0) 🗉 🖬	ROBOTIS	2014-04-10 3191

- Install and run RoboPlus; click on Dynamixel Wizard button to start Dynamixel Wizard.

i) Moving the Manipulator

- <u>Before starting Dynamixel Wizard ensure the</u> <u>arm is fixed to the base plate; then extend the</u> <u>arm. Otherwise; it may cause physical harm.</u>

- USB2Dynamixel to the PC after wiring is complete. From the PC check the COM port number of USB2Dynamixel.

파일C 동작(A) 보기(V) 도용말(H)	🚔 장치 관리자	
★ ●	파일(F) 동작(A) 보기(V) 도움말(H)	
▲ isobotis-PC > ● Bluetooth 송수신 장치 > ● DVD/CD-ROM 드라이브 > ● IDE ATA/ATAPI 컨트롤러 > ● IDE ATA > ● IDE ATA/ATAPI 컨트롤러 > ● IDE ATA > ● IDE ATA > ● IDE ATA/ATAPI 컨트롤러 > ● IDE ATA		
▶·■ 유내용 상직 · 문 후면 이타페이스 자치	Image: Second seco	

- select the Port Settings tab and click on the Advanced button-> change the latency time from 16 (default) to 1.

- After changing the COM port settings supply the 24V to the arm (of course, this means wiring is complete).

▲ Always ensure before powering on. While power is on du not change wires; otherwise it may cause undesired operations.

- The picture on the left is the COM port number of USB2Dynamixel (which should be connected to the arm). Click on the \checkmark to continue.

COM24	- 18	90	100	* - 0 -		
? 없음						
				bps	검색	🔿 DXL 1. 💿 DXL 2.0
			0	9600	123	100 C
			1	57600	10	
			2	115200	171	
			13	1000000	V	
		1	4	2000000	10	2144 1173
			5	3000000	13	입적 시작
						24 27
			6			81.0/1
			-			

- Once connected make sure that 1000000bps box is checked and "DXL 2.0" is selected. Then click on Search. The arm's default baud rate is 1 Mbps.

1000000 bost					10-1000000 bps	44	49	2 .	-462-
- C [D-001] H54-300-		-			COL PRO	0	Model Number	5424	190
- B [D:002] H54-200-		bee	54	0 DOL 10 . DOL 20	- B (0:002) H54-200-	6	Version of Femware	18	1154
- B [[0:001] H54-100-	0	9600	10	- @ [D*001] M4*100- - @ [D*000] M5*100- - @ [D*005] M42*05- - @ [D*005] M42*25*5	7	0	1 4	-	
- 6 [D:005] H42-25-6	1	57600			1	Baud Pate	3		
- B [D-006] H42-20-5	2	115200	0			Return Delay Time	20		
Contraction (Contraction (Contraction)) Contraction (Contraction) Contraction Contraction (Contraction) Contraction Contraction	The state of the state of the	- 0:007) Mc-106	11	Operating mode	3	1			
	24 AR		13	Homing offset	0				
	0.2003.000		17 Moving threshold	Moving threshold	50				
		2423		23	Temperature limit	80			
			22 Max Voltage Limit	400	1.1				
						24	Min Voltage Limit	150	
	24 92					25	Accelation Limit	255	
			30	Torque Smit	629				
			32	Velocity Limit	17000				
						*	Max Desilion Limit	251000 *	

- Once search is complete the arm's components (Dynamixel PROs) are listed on the left. Click on an individual Dynamixel PRO to display the contents of its Control Table.

1000000 bes	84 49	29	1		(TA) #0	20 14	1		
P Frid Pan	Will Exception to a table to b		35	D- COL Pro	VX BB		36		
(0.001 H4-30)	45 External Port Mode 3	0	l line	T0:001164-00-	40 External Port Mode 3	0	I Loss		
- CO-0031 H54-100-	47 External Port Mode 4	0		- CID-2031 H54-100-	47 External Port Mode 4	0	100		
- 8 (10:004) H54-100-	41 Shindown	3		- B (0:004) H54-100-	41 Shittown	3			
00000 H42-00-0	Soc. Terate Chatte			E (0:00) H2-20-5	296 THEFE HIM				
MX TANCEL	563 LED RED	0		E- MICHANOLH	563 LED RED	0			
L CC:007] MK-136	564 LED GREEN	0		T-8 [D:007] Mc-106	564 LED GREEN	0	1		
A10.0	565 LED BLUE	0			565 LED BLUE	0	1.1.1.1.1.1.1		
	586 Velocity I Gain	34			586 Velocity I Gain	14			
	588 Velocity P Gain	399			588 Velocity P Gain	299			
	594 Position P Gain	22	MADC 1 MANE 0	MADO 1	e	e .	594 Position P Gain	32	2
	596 Goal position	3905				596 Goal position	3905	MAC	
	600 Goal velocity	17000			600 Goal velocity	17000	MIN		
	604 Goal Torque	625	1 8		504 Goal Torgue	629	1		
	606 Goal accelation	64	28		505 Goal accelation	84	28		
	ESS Maying				612 Madea	0 -	0.000		
	STATUS ERROR	6543210			STATUS ERROR 4 5	43210			

- Dynamixel Pro will only move (operate) when Torque Mode is on. So always make sure the Torque Mode is on prior to sending moving commands. Torque Enable is located on address number 562. A value of 1 means on and 0 means off.

1000000 bps	5 <u>0</u> 49	2 *	-62-	6	20 BB	2 -	-888-
- A FORCE STREET	46 External Port Mode 3	0	192	- B CONTRACTOR	45 External Port Mode 3	0	1.192
-B [00:002] H54-200-	47 External Port Mode 4	0	L MARKE	-B (0:002) H54-200-	47 External Port Mode 4	0	1.134
- C01003 H54-100-	48 Shuhdown	25			48 Shutdown	25	-
- 0 00052 H42-20-6				- B (0:005) H42-00-S		1.0	1000
	563 LED RED	0			563 LED RED	0	
- @ [0:007] MK-106	564 LED GREEN	0		-8 (0:007) M<-106	564 LED GREEN	0	
100	565 LED BLUE	0			565 LED BLUE	0	
	506 Velocity I Gain	54			586 Velocity I Gain	34	
	588 Velocity P Gain	299			588 Velocity P Gain	399	
554 /Position P Gain S2 2		554 Position P Gain	32	Mar			
	596 Goal position	3905	MAC 1		596 Goal position	3905	MAC
600 Geal velocity 17000			600 Goal velocity	17000			
	604 Goal Tarque	620	() () () () () () () () () ()		604 Goal Torque	620	<u> </u>
	605 Goal accelation	64	적용		606 Goal accelation	64	2
	ESS Advalues				Ell Mauina		1

COM24 • # #	n 21	0010			2	COM24 • 🖉 🖉	•	2001-0-		
000000 bps	44	42	2		188-	1000000 bps	44	42	2	-988-
- 1000001004000500000	45 Ex	ternal Port Mode 3	0		192	- COLORIDATION	45	External Port Mode 3	0	1 192
Cl 0000 154-200-5500-R 47 External Port Mode 4 0 Color 154-100-5500-R 48 Shutdown 25 Cl 0000 154-100-5500-R 48 Shutdown 25 Cl 0000 154-20-5000-R 952 Tiropar Enable 1	- Patelle	- 6 10:002) H54-200-6500-R	47	External Port Mode 4	0	- Martin				
	- C 10 000 H54-100-S500-R 48	45	Shutdown	25						
		- 0 (0 005) H42-25-S300-R	92	Torque Enable	1					
-0 (0:006) H42-20-5300-41 MC 11 ANDE1	563 LE	D RED	0			- (D 006) H42-25-5300-R	563	LED RED	0	1.1
Stat LED GREEN 0 565 LED BLUE 0 566 Velocity I Gain 164 587 Velocity I Gain 22 588 Velocity P Gain 22 600 Goal velocity 12000 603 Goal velocity 12000 604 Goal accelution 64 4.13 Movie 0	- @ [0:007] MC-106 564	LED GREEN	0							
	0	11	9	565	LED BLUE	0				
	2 2 59	586	Velocity I Gain	14						
		588	Velocity P Gain	399						
		594	Position P Gain	22	Si normania					
	MAC 2147453647				1000	MAC 2543405647				
	oal velocity	13000		POR CONNECTION		.600	Goal velocity	17000	Pare - Chever	
	oal Torque	629		* <u>\$</u>		604	Goal Torque	620	10000	
	sel accelation	54		78		606	Goal accelation	64	7.8	
	£10 M	avêna	. 0	•	No. of Concession, Name		633	Moulon	0	-
	source	ERROR 4 5	4 3 2 1 0			· · · · · · · · ·	5747	VS ERROR 6 5	43210	

- Turn 'Torque Enable' on to all joints. The pose of the arm will become rigid (check by applying a small force). Afterwards click on joint 6.

now verify the arm moves properly by changing Goal Position. Move the end effector (joint 6) +90 degrees. To move joint 6 to +90 degrees set Goal Position of the Dynamixel PRO model H42-20-S300-R to 75938 or L42-10-S300-R to 1024.
once Goal Position has been set visually verify that joint 6 has rotated 90 degrees.
to actually get Dynamixel PRO to move to its respective Goal Position click on the Apply button after setting the value. If no movement happen make sure Torque Enable is turned on (set to 1).

- Set Goal Position back to 0 to set position to its original position.

0000 bes 001, Pro	4.0			No. of Concession, Name
· Internet and the second second		8.5	2	100
A summary state and support strength in	45	External Port Mode 3	0	1 192
[0:002] H54-200-6500-R	47	External Port Mode 4	0	MARKE
[0:003] H54-100-S500-R	45	Shutdown	25	-
- € 10:003 He->s00 A € 10:000 He-35-500 A Mr. T&A006 Mr. T&A006 - € 10:007 Mr106	52	Torque Enable	1	1
	563	LED RED	0	
	564	LED GREEN	0	
	565	LED BLUE	0	
	586	585 Velocity I Gain 14 588 Velocity P Gain 299		
	588			
	554	Position P Gain	32	2
	1	Geal broothat	10000	MAC 214140647
	600	Goal velocity	17000	MPE -2347453640
	604	Goal Torque	620	10000
	606	Goal accelation	64	718
	633	Mouine	0	

- click on ID. Set the Goal Position to 1000 (500 for L42 model).

- to actually get Dynamixel PRO to move to its respective Goal Position click on the Apply button after setting the value. If no movement happen make sure Torque Enable is turned on (set to 1).

- Set Goal Position back to 0 to set position to its original position..

- do the same procedure for joint 2 through 6.

ROBOTIS

2.6 How to use Robotis Manipulator SDK

i) Preparation Before using Robotis Manipulator SDK

The following are pre-requisites for the ArmSDK. Eigen Package(<u>http://eigen.tuxfamily.org</u>, version 3.0.6 or Later)

ii) Installation Package

- Download and unzip Eigen Package.

- Start Visual Studio go to "Project Properties -> VC++ Directories -> Include Directories" set Eigen's source directory.

Include Directories	8 ×
\$(SolutionDir)Winclude CWUsersWrobatisWDesktopWeigen-eigen-6b387 4	
\$(VCInstallDir)include \$(VCInstallDir)atlmfc\u00efficulde \$(WindowsSdkDir)include \$(FrameworkSDKDir)\u00efficulde	*
☑ Inherit from parent or project defaults	Macros>> OK Cancel

- repeat procedure (i)~(ii) to include the examples and include directories.
 once preparations are complete press the F7 key to compile and build.

3. Examples

The following examples are included with the ArmSDK; ArmMonitor01, ArmMonitor02, SimpleP2P, SimpleIK, and SimpleTorqueOnOffandFK.

3.1 ArmMonitor

In ArmMonitor allows viewing of a joint current position, target position, end effector's pose, and joint parameters (Velocity, Acceleration, Position P, I, D Gain, Velocity P, I Gain). Change the values from the table below to see changes.

- Joint's values table

Note that a press of [and { key denote decrease by shown units and }] denote increase by shown units.

Key Value	[]	{	}
Position	$-\frac{\pi}{180}$	$+\frac{\pi}{180}$	$-2 \times \frac{\pi}{180}$	$+^{2 \times \frac{\pi}{180}}$
Velocity	-100	+100	-200	+200
Acceleration	-1	+1	-2	+2
Position P Gain	-1	+1	-2	+2
Position I Gain	-1	+1	-2	+2
Position D Gain	-1	+1	-2	+2
Velocity P Gain	-1	+1	-2	+2
Velocity I Gain	-1	+1	-2	+2

i) How to Use ArmMonitor

(1) ArmMonitor01

ROBOTIS

- To start ArmMonitor01 create a new project; once created press the Ctrl + F5 keys to run.

•

You will need to enter the COM port number and baud rate. Simply enter the values and "Succeed to open USB2Dynamixel" should appear onscreen followed by "Press any key to move first pose." Use the keyboard to move the arm.

Input COM port number : 24 Input baud number : 3 Succeed to open USB2Dynamixel Press any key to move first pose

The following table is the list of baud rate values and its corresponding speed; Robotis Maniupulator default value is 3 (1Mbps).

Baudrate Number	baudrate
0	2,400 bps
1	57,600 bps
2	115,200 bps
3	1,000,000 bps
4	2,000,000 bps
5	3,000,000 bps

The photo below is the arm in its "arrival" pose.

ROEOI IS		
ROBOTE		_
	<u> </u>	
	-	

1		(Calc(rad))	> 1	(DXL(unit))	>	: <dxi< th=""><th>(rad))</th><th>1 5</th><th><endef f<="" th=""><th>ector'</th><th>s Pose></th></endef></th></dxi<>	(rad))	1 5	<endef f<="" th=""><th>ector'</th><th>s Pose></th></endef>	ector'	s Pose>
Joint1	:	0.00000	1	0		1 0.0	0000	1	X(nm)	:	-4.237
Joint2	:	-2.24227	:	-62688		1 -0.	78462		Y(mm)	:	-0.000
Joint3	:	-0.11266	1	62789		1 0.7	8589	1	Z(mm)	: .	411.529
Joint4	:	0.00000		0		: 0.0	0000	1	Roll(ra	: (ba	-0.092
Joint5	:	0.78511		37955		1 0.7	8511	1	Pitch	ad) :	-1.571
Joint6	:	0.00000		0		1 0.0	0000	1	Yaw(rad	i) :	-3.050
//====				===== Goal U	Jal	ue of	Arn ==			******	/
2		(Calc(rad))	> 1	(DXL(unit))	>	I <dxi< td=""><td>(rad))</td><td>> 1</td><td></td><td></td><td></td></dxi<>	(rad))	> 1			
foint1	:	0.00000		0		1 0.0	0000	1			
Joint2	:	-2.24304	1	-62750		1 -0.	78540				
Joint3	:	-0.11315	1	62750		1 0.7	8540	1			
Joint4	:	0.00000	1	0		1 0.0	0000				
Joint5	:	0.78540		37969		1 0.7	8540	1			
Joint6	:	0.00000	1	0		1 0.0	0000	1			
//====	==	**********	-	===== Joint	t P	aranet	er ===		*******		//
3		Velocity	Ac	celeration	I P	os_P	Pos_l	11	Pos_D :	Vel_P	Vel_I
Joint1	:	500 1		4	1	641		01	01	399	1 1
Joint2	:	500 1		4	1	641	ŧ.	01	0:	399	1 1
Joint3	:	500 1		4	:	641	0	01	0:	256	1 10
Joint4	:	500 1		4	1	641	6	01	0:	256	1 10
Joint5	:	500 1		4	1	641	6	01	01	440	1 40
Joint6	:	500 1	_	4	1	64	1	01	01	440	1 40

Press the Ctrl + F5 keys simultaneously and the screen should appears like the picture above

From ArmMonitor01 change the joint's target position and joint parameter to move the arm.

Use the directional keys to move cursor. Use the '[' '{' keys to lower values and ']' '}' to increase.

From the picture (from the screen output) with the red area with "1" it shows the joints current pose (Present Value) and end effector's pose.

The red area with "2" shows the target pose (Goal Value) for all joints.

The red area with "3" shows the parameters of all joints (Velocity, Acceleration, Position P Gain, I Gain, D Gain, Velocity P Gain, I Gain).

<u>Values from joints 2 and 3, Calc<rad> and DYNAMIXEL<rad>, show on</u> the red ares with "1" and "2" due to difference between point of origin and DH Configuration.

Calc<rad> is the calculated angle from DH and DYNAMIXEL<rad> from the servo's. The cursor and only control Goal Value Joint Parameter.

Sec. and		(Calc(rad))	:	(DXL(unit))		(DXL(rad))		<endeffect< th=""><th>or</th><th>'s</th><th>Pose></th><th></th></endeffect<>	or	's	Pose>	
Joint1	:	0.017548	:	1401	1	0.017548		X(nn)			6.424	1
Joint2	:	-2.22568	:	-61363		-0.76804	- 3	Y(nn)			0.112	1
Joint3	:	-0.09565	:	64148	1	0.80290	- 3	Z(nn)	:	4	08.635	1
Joint4	:	0.017463	1	1395		0.017463	- 3	Roll(rad)	:		-2.618	
Joint5	:	0.80261	:	38801	1	0.80261	- 3	Pitch(rad)			-1.510	
Joint6	:	0.002174	:	105	1	0.002174	- 3	Yaw(rad)	:	1	-0.495	
//====			-	Goal W	lalu	e of Arn ==				-	//	
		(Calc(rad))	:	(DXL(unit))	. 1	(DXL(rad))						
Joint1	:	0.017450	1	1394	1	0.017450	- 3					
Joint2	:	-2.22559	:	-61356	1	-0.76794	- 3					
Joint3	:	-0.09570	1	64144	1	0.80285	- 3					
Joint4	:	0.017450	1	1394	1	0.017450	- 3					
Joint5	:	0.80285	:	38813	1	0.80285	- 1					
Joint6	:	8.01745	:	844	1	0.01745	- 3					
//====				Joint	Pa	rameter ===	e e è			-	//	
		Velocity	ice	eleration	Po	s_P Pos_I	1	Pos_D Vel	P	1	Vel_I	
Joint1	1	500 1		4 1	0.000	641	01	01	39	91	14	
Joint2	:	500 1		4 1		641	01	0:	39	91	14	
Joint3	:	500 1		4 1		641	01	01	25	61	16	
Joint4	:	500 1		4 1	í	641	0:	0:	25	61	16	
Joint5	:	500 1		4 1		641	01	0:	44	0:	40	
Joint6	:	500 1		4 1		641	0:	0:	44	0:	40	
[Statu:	:]											

The Goal Value of Arm의 Calc<rad> value (enclosed by the red frame) can be increased with the']' key. The unit is $\frac{\pi}{180}$ rad

Visually verify arm movement every time when changing position.

(2) ArmMonitor02

 \triangle Use of this example may pose safety risks. When testing the example keep a safe distance while able to cut power off in case of undesired operation.

ArmMonitor02 allows direct control of the end effector. Control the end effector is done by ComputeIK function where it moves each joint to its solution position (rad).

Key Pose	[]	{	}
Position X	-2mm	+2mm	-4mm	+4mm
Position Y	-2mm	+2mm	-4mm	+4mm
Position Z	-2mm	+2mm	-4mm	+4mm
Orientation Roll	$-\frac{\pi}{180}$ rad	$+\frac{\pi}{180}$ rad	$2 \times \frac{\pi}{180}$ rad	$+^{2\times\frac{\pi}{180}}$ rad
Orientation Pitch	$\frac{\pi}{-180}$ rad	$+\frac{\pi}{180}$ rad	$2 \times \frac{\pi}{180}$ rad	$+^{2\times\frac{\pi}{180}}$ rad
Orientation Yaw	$-\frac{\pi}{180}$ rad	$+\frac{\pi}{180}$ rad	$2 \times \frac{\pi}{180}$ rad	$+^{2\times\frac{\pi}{180}}$ rad

- EndEffector pose table

•

To setup and run ArmMonitor02 follow the same procedure as in ArmMonitor01.

As in ArmMonitor01 you will be asked to enter COM port number and baud rate. You should also see "Succeed to open USB2Dynamixel" followed by "Press any key to move first pose." The arm moves to its initial pose.

Input COM port number : 24 Input baud number : 3 Succeed to open USB2Dynamixel Press any key to move first pose

The photo below is the arm in its "arrival" pose.

//====				==== Present	Ua:	lue of Ar	n ===			//	
		(Calc(rad)	> 1	(DXL(unit))	> 1	(DXL(rad	>>	<endeffe< td=""><td>ctor's</td><td>Pose></td><td></td></endeffe<>	ctor's	Pose>	
Joint1	:	0.00000	1	0	1	0.00000	1 1	X(nm)	: -	4.237	
Joint2	:	-2.24306	1	-62751	:	-0.7854	1 1	Y(nn)	: -	0.000	
Joint3	:	-0.11314		62751	:	0.78541		Z(nn)	2: 41	1.529	
Joint4	:	0.00000		0	:	0.00000		Roll(rad	D: -	1.571	
Joint5	:	0.78538	1	37968	1	0.78538		Pitch(ra	d) : -	1.571	
Joint6	:	0.00002	1	1	1	0.00002		Yaw(rad)	: -	1.571	
//====		**********		===== Goal U	Jalu	e of Arm				====//	
		(Calc(rad)	> 1	(DXL(unit))	> 1	<dxl(rad< td=""><td>>> 1</td><td><endeffe< td=""><td>ctor's</td><td>Pose></td><td></td></endeffe<></td></dxl(rad<>	>> 1	<endeffe< td=""><td>ctor's</td><td>Pose></td><td></td></endeffe<>	ctor's	Pose>	
Joint1	:	8.00000	1	0	1	0.00000	1	X(nm)	: -	4.239	
Joint2	:	-2.24304	1	-62750	1	-0.7854	0 :	Y(nn)	: -	0.000	
Joint3	:	-0.11315	1	62750	1	0.78540		Z(nn)	1: 41	1.527	
Joint4	:	0.00000	1	0	1	0.00000	1 1	Roll(rad	D : -	0.927	
Joint5	:	0.78540	1	37969	1	0.78540		Pitch(ra	d) : -	1.571	
Joint6	:	0.00000	1	0	1	0.00000		Yaw(rad)	: -	2.214	
//====				===== Joint	: Par	raneter =				//	
		Velocity	Ac	celeration	Po:	s_P Pos	_I !	Pos_D I U	el_P	Vel_I	
Joint1	:	500	6	4 1	E. Constant	641	01	01	3991	14	
Joint2	:	500	t i	4	1	641	0:	0:	3991	14	
Joint3	:	500	0	4 1	1	641	0:	0:	2561	16	
Joint4	:	500		4 1	1	641	0:	0:	2561	16	
Joint5	:	500		4 1		641	0:	0:	440:	40	
Joint6	:	500		4	1	641	0:	0:	4401	40	
Estatus	:]										

ROBOTIS

The different values of the end effector depicted from the red areas with "1" and "2" (from the screen output image above) is due to the difference of Dynamixel Pro's Goal Position and Present Position values (gear backlash) and DH with the point of origin. <u>1"1" shows the end effector's pose via calculations from kinematics and "2" the actual pose.</u>

		(Calc(rad))	1	(DXL(unit))	. 1	(DXL(rad))	1	<endeffecto< th=""><th>pr'</th><th>s Pose></th><th></th></endeffecto<>	pr'	s Pose>	
Joint1	:	0.00000	1	0	- 1	0.00000	1	X(nn)	:	-2.237	6
Joint2	:	-2.23822	1	-62365		-0.78058	1	Y(nn)	:	-0.000	1
Joint3	:	-0.11305	1	62758	:	0.78550		Z(nn)	:	411.529	
Joint4	:	0.000841	1	67	1	0.000841		Roll(rad)	:	-1.596	
Joint5	:	0.78048	1	37731	:	0.78048		Pitch(rad)	:	-1.571	
Joint6	:	-0.00265	1	-128	1	-0.00265		Yaw(rad)	:	-1.528	
//====				Goal U	alu	e of Arn ===				//	
		(Calc(rad))	1	(DXL(unit))		(DXL(rad))		<endeffecto< td=""><td>r'</td><td>s Pose></td><td></td></endeffecto<>	r'	s Pose>	
Joint1		0.00005	1	4	1	0.00005	1	X(nn)	:	-2.233	
Joint2	:	-2.23823	1	-62366	1	-0.78059		Y(nn)	:	-0.000	
Joint3	:	-0.11306	1	62758	:	0.78549		Z(nn)	:	411.529	
Joint4	:	0.02437	1	1947	:	0.02437	1	Roll(rad)	:	1.571	
Joint5	:	0.78064	1	37739	1	0.78064	:	Pitch(rad)	:	-1.569	
Joint6	:	-0.01722	1	-833	:	-0.01722	:	Yaw(rad)	:	1.571	
//====				Joint	Pa	rameter ====				======//	
		Velocity	Ace	eleration	Po	s_P Pos_I	1	Pos_D : Vel.	P	! Vel_I	
Joint1	:	500 1		4 1		641 6	16	01 4	100	1 15	
Joint2	:	500 1		4 1	Ê -	641 6	16	0: 4	100	1 15	
Joint3	:	500 1		4 1	Ě.	641 6	16	01 3	257	1 17	
Joint4	:	500 1		4	6	641 6	31	81 3	257	1 17	
Joint5	:	500 1		4 1	í.	641 0	: 6	0: 4	141	1 41	
Joint6	:	500 1		4	6	641 6	::	01	141	1 41	
Estatus	:]										

Press the] key to increase the end effector's pose value by $\frac{\pi}{180}$ rad; X increases by 2mm.

Visually verify arm movement every time when changing position.

ii) Arm Monitor Source Description

$(1) \, \texttt{cmd_process.cpp}$

```
- void DrawPage (void)
```

printf("//===================================									
printf("	<calc(rad)> <dxl(unit)></dxl(unit)></calc(rad)>	<dxl(rad)></dxl(rad)>	> <e< td=""><td>ndEffector's</td><td>s Pose</td><td>⊳ \n");</td></e<>	ndEffector's	s Pose	⊳ \n");			
printf("Joint1:	I	I)	X(mm)	:	\n");			
printf("Joint2 :	I	I	Ľ	Y(mm)	:	\n");			
printf("Joint3 :	I	I	2	Z(mm)	:	\n");			
printf("Joint4 :	I	I	F	Roll(rad)	:	\n");			
printf("Joint5 :	I	I	F	Pitch(rad)	:	\n");			
printf("Joint6 :	I	I	P	Yaw(rad)	:	\n");			
printf("//===================================									
printf("	<calc(rad)> <dxl(unit)></dxl(unit)></calc(rad)>	<dxl(rad)></dxl(rad)>	>			\n");			
printf("Joint1:	I	I	I			\n");			
printf("Joint2 :	I	I	I			\n");			
printf("Joint3 :	I	I	I			\n");			
printf("Joint4 :	I	I	I			\n");			
printf("Joint5 :	I	I	I		\n");				
printf("Joint6 :	I	I	I			\n");			
printf("//=====	==============	Joint Paramete	er ====		=====	===========================;;			
printf("	Velocity Acceleration Po	s_P Pos_I F	Pos_D	Vel_P Ve	l_l \r	ı");			
printf("Joint1:			1	Ι	I	\n");			
printf("Joint2 :			1	Ι	I	\n");			
printf("Joint3 :			1	Ι	I	\n")			
printf("Joint4 :			1	Ι	I	\n");			
printf("Joint5 :			1	Ι	I	\n");			
printf("Joint6 :			1	I	1	\n");			
printf("[Status]						\n");			
GotoCursur(GOAL_JOINT1_ROW, CALC_ANGLE_RAD_COL);									

- the above is DrawPage code for ArmMonitor.

void GotoCursur(int row, int col)

COORD pos={col, row};

SetConsoleCursorPosition(GetStdHandle(STD_OUTPUT_HANDLE), pos);

- This allows the cursor to jump between rows and columns.

ROBOTIS

- void MoveDownCursor()
- void MoveLeftCursor()
- void MoveRightCursor()

these 4 functions allows the directional keys to control cursor location..

- void UpDownValue(int dir)

giOldRow = giRow; giOldCol = giCol; GotoCursur(STATUS_ROW, STATUS_COL); printf(" "); if(giRow <= GOAL_JOINT6_ROW) UpDownGoalValue(dir); else if((giRow > GOAL_JOINT6_ROW) && (giRow <= PARAMETER_JOINT6_ROW)) UpDownJointParameter(dir); WriteValue(); GotoCursur(giOldRow, giOldCol); giRow = giOldRow; giCol = giOldRow; giCol = giOldCol; UpDownValue allows cursor to increase/decrease values.

- void initialize (void)

initialize() function described below.

gpArmComm = new Pro_Arm_Comm_Win()

gpArmComm is a class of Pro_Arm_Comm_Win. Pro_Arm_Comm_Win includes ID and baud num-related aspects.

gpArmComm->DXL_Set_Init_Param(Port, Baud)

Sets Port Number Baudrate from pointer

	double LinkLength
	double LinkTwist
	double JointOffset
	double JointAngle
	double MaxAngleInRad
gpRobotisArm->AddJoint	double MinAngleInRad
	int MaxAngleValue
	int MinAngleValue
	double MaxAngleLimitInRad
	double MinAngleLimitInRad
	unsigned int Dynamixel_ID

input each joint's DH joint parameters.

gpArmComm->Arm_ID_Setup(gpRobotisArm->GetArmIDList()) from AddJoint rearrange ID List.

gpArmKinematics = new Kinematics(gpRobotisArm)

gpRobotisArm->AddJoint (RobotInfo Class) generates Kinematics Class.

gpArmKinematics->SetMaximumNumberOfIterationsForIK(60)

this fuction calculates the IK's max number of iterations. In this case 60.

gpArmKinematics->SetConvergenceCondition(0.001, 5.0)

sets convergence for IK. 1st value to determine solution; second value maximum allowed.

gvdGoalCalculationAngleRad.resize(gpRobotisArm->GetRobotInfo()->size()) setup target pose value (rad).

gvdRealCalculationAngleRad.resize(gpRobotisArm->GetRobotInfo()->size()) current pose value (rad).

gvdGoalDynamixelAngleRad.resize(gpRobotisArm->GetRobotInfo()->size()) target joint's position value (rad)

gvdRealDynamixelAngleRad.resize(gpRobotisArm->GetRobotInfo()->size()) actual joint's position value (rad).

gviGoalDynamixelAngleUnit.resize(gpRobotisArm->GetRobotInfo()->size()) actual joint's target position value (value).

gviRealDynamixelAngleUnit.resize(gpRobotisArm->GetRobotInfo()->size()) actual joint's position value.(value).

gviPositionPGain.resize(gpRobotisArm->GetRobotInfo()->size()) Position P Gain value.

gviPositionIGain.resize(gpRobotisArm->GetRobotInfo()->size()) Position I Gain value.

gviPositionDGain.resize(gpRobotisArm->GetRobotInfo()->size())

Position D Gain value.

gviVelocityPGain.resize(gpRobotisArm->GetRobotInfo()->size())

Velocity P Gain value.

gviVelocityIGain.resize(gpRobotisArm->GetRobotInfo()->size())

Velocity I Gain value.

gviDynamixelVelocity.resize(gpRobotisArm->GetRobotInfo()->size()) Velocity value.

gviDynamixelAcceleration.resize(gpRobotisArm->GetRobotInfo()->size())

Acceleration value

gvdGoalCalculationAngleRad = gpArmKinematics->GetCurrentAngle(); gvdRealCalculationAngleRad = gpArmKinematics->GetCurrentAngle();

from gpArmKinematics (mCurrentAngle) current pose value initialize gvdGoal CalculationAngleInRad and gvdRealCalculationAngleInRad.

gvdAngleGapCalcandDynamixelRad.resize(gpRobotisArm->GetRobotInfo()->size()) gvdAngleGapCalcandDynamixelRad<< 0.0, ML_PI_2 - 6.4831 * ML_PI/ 180.0, ML_PI_4 + 6.4831 * ML_PI/ 180.0, 0.0, 0.0, 0.0

This function has been introduced due to the differences between point of origin and actual joints' point of origin from the DH Configuration. Once the size of angle adjustment has been assigned per joint enter the difference between point of origin and the joint actual point of origin. The values above are default values (ML_PI is in π rad, ML_PI_2 in $\frac{\pi}{2}$ rad, and ML_PI_4 in $\frac{\pi}{4}$ rad.)

gvdGoalDynamixelAngleRad<< 0.0, ML_PI/4.0, -ML_PI/4.0,0.0, -ML_PI/4.0, 0.0;

GoalDynamixelAngleRad is the initial pose default values.

gviPositionPGain.fill(DEFAULT_POSITION_P_GAIN) gviPositionIGain.fill(DEFAULT_POSITION_I_GAIN) gviPositionDGain.fill(DEFAULT_POSITION_D_GAIN) Position P, I, D Gain functions. Default P gain value is 64 $0|_{\Box}$; I and D Gain are 0. the <u>fill</u> contains every joint's PID values individually.

gpArmComm->Arm_Torque_On();

This function gets initialized before moving the arm to its initial pose.

gpArmComm->Arm_Set_Position_PID_Gain(DEFAULT_POSITION_P_GAIN, DEFAULT_POSITION_I_GAIN, DEFAULT_POSITION_D_GAIN);

Sets the manipulator joints' PID gain values..

gpArmTrajectory = new TrajectoryGenerator(gpArmKinematics)
gpArmTrajectory->Set_P2P(

gvdRealDynamixelAngleRad-gvdAngleGapCalcandDynamixelRad,

gvdGoalDynamixelAngleRad-gvdAngleGapCalcandDynamixelRad,

5.0, 1.0)

The generated <u>Kinematics, StartPose, EndPose, TotalTime, AccelTime</u> get inputted into the trajectory. Trajectory is generated via P2P. The StartPose is the current pose and EndPose is ArmMonitor's initial pose. TotalTime is 5.0sec where AccelTime is 1.0sec. <u>For more information on trajectory generation</u> <u>please go to 4.2 How to Program and 6.3 MotionEngine's Trajectory Generator.</u>

gpMotionPlayer = new MotionPlay(gpArmKinematics, gpArmTrajectory);

MotionPlay's CurrentTime, ElapsedTime get initialized and setp up MotionProfile. These are required variables for kinematics and trajectory's motion.

gpMotionPlayer->Set_Time_Period(5);

Motion's time period in msec.

_tempMotionTimer.Start();

gvdGoalCalculationAngleRad = gpMotionPlayer->NextStep(&ErrorStatus);

gvdGoalDynamixelAngleRad = gvdGoalCalculationAngleRad +

gvdAngleGapCalcandDynamixelRad;

gviGoalDynamixelAngleUnit = gpRobotisArm

->Rad2Value(gvdGoalDynamixelAngleRad);

CommResult = gpArmComm

->Arm_Set_JointPosition(gviGoalDynamixelAngleUnit);

gvdGoalCalculationAngleRad = gpMotionPlayer->NextStep(&ErrorStatus)

gvdGoalDynamixelAngleRad = gvdGoalCalculationAngleRad +

gvdAngleGapCalcandDynamixelRad

_tempMotionTimer.Stop();

_tempMotionTimer.Wait(Period - _tempMotionTimer.GetElapsedTime());

The functions above have set motion time periods where functions are performed via while loop during their duration.

First, the set Control Time Period gets matched.

_tempMotionTimer.Start();

...

_tempMotionTimer.Stop();

_tempMotionTimer.Wait(Period - _tempMotionTimer.GetElapsedTime());

Measure elapsed start and stop time then subtract its difference with elapsed calculated time in set Control Time Period(5msec in this case).

The target pose from the current step obtained from the algorithm below.

```
gvdGoalCalculationAngleRad = gpMotionPlayer->NextStep(&ErrorStatus);
gvdGoalDynamixelAngleRad = gvdGoalCalculationAngleRad +
gvdAngleGapCalcandDynamixelRad;
gviGoalDynamixelAngleUnit = gpRobotisArm
->Rad2Value(gvdGoalDynamixelAngleRad);
CommResult = gpArmComm
->Arm_Set_JointPosition(gviGoalDynamixelAngleUnit);
gvdGoalCalculationAngleRad = gpMotionPlayer->NextStep(&ErrorStatus)
gvdGoalDynamixelAngleRad = gvdGoalCalculationAngleRad +
gvdAngleGapCalcandDynamixelRad
```

First, NextStep gets the current step's target angles, which are from the D-H Configuration. However, the actual Dynamixel PRO start point and the D-H Configuration's differ. This difference is taken into account and each joint Goal Position Value is set again with Rad2Value, the resulting Arm_Set_JointPosition moves the manipulator.

If successful , the manipulator's communications Arm_Set_JointPosition returns a value of 1.

gvdRealDynamixelAngleRad =

KOEOTIS

gpRobotisArm->Value2Rad(gviRealDynamixelAngleUnit);

gvdRealCalculationAngleRad= gvdRealDynamixelAngleRad

- gvdAngleGapCalcandDynamixelRad;

After motion is complete it print's the joint's actual pose(rad) and calculated pose(rad).

gpArmKinematics->Forward(gvdRealCalculationAngleRad, &gRealPose); gpArmKinematics->Forward(gvdGoalCalculationAngleRad, &gGoalPose);

Factor's current angle and goal angle to Forward Kinematics. The end effectot's actual and goal pose (gRealPose, gGoalPose) can be assigned.

gpArmComm->Arm_Set_JointAcceleration(DEFAULT_JOINT_ACCELERATION);
gviDynamixelAcceleration.fill(DEFAULT_JOINT_ACCELERATION);

Sets every joint's acceleration value individually. DEFAULT_JOINT_ACCELERATION has 4 values

gpArmComm->Arm_Set_JointVelocity(DEFAULT_JOINT_VELOCITY);
gviDynamixelVelocity.fill(DEFAULT_JOINT_VELOCITY);

Sets every joint's velocity value individually. DEFAULT_JOINT_VELOCITY 9000 values.

void UpDownGoalValue(int dir);

void UpDownJointParameter(int dir);

void UpDownValue(int dir);

UpdownGoalValue allows change in goal pose, UpDownJointParameter allows changes to joint's parameters (Velocity, Acceleration, Position P, I, D Gain, Velocity P, I Gain). UpDownValue combines both functions.

=

3.2 SimplePtoP

A Product may move fast with this example. When testing this example keep a safe distance while able to cut power off in case of undesired operation

SimplePtoP is the end effector's move point (from P1 to P2).

i) How to Use SimplePtoP

To start SimplePtoP follow the same procedure for ArmMonitor. Then press the Ctrl + F5 keys to run.

Input COM port number : 7 Input baud number : 1 Succeed to open USB2Dynamixel Press any key to move first pose move to first pose Press any key to start P2P Motion

You will be asked for COM port number and baud rate.

If succeded then you will see a 'Succeed to open USB2Dynamixel' followed by 'Press any key to move first pose.' Press a key to move the arm to its initial pose. Then press a key to begin P2P Motion. The photo below is the arm in its initial pose.

Input COM port number : 7 Input baud number : 1 Succeed to open USB2Dynamixel Press any key to move first pose move to first pose Press any key to start P2P Motion start Current Calculated Angle is <u>0.00063</u> -1.45702 -0.89792 0.00063 0.00063 0.00063

ROBOTIS

SimplePtoP displays the joints' pose(rad). In SimplePtoP prssing the 'p' or 'P' will cause motion to pause. Press the ESC key to end.

• II

ii) SimplePtoP Source Description

vecd P1, P2;

P1.resize(RobotisArm.GetRobotInfo()->size());

P2.resize(RobotisArm.GetRobotInfo()->size());

P1, P2 sets every joint's position.

P1.fill(0.0);

P1 -= gvdAngleGapCalcandDynamixelRad;

P2.fill(0.5);

P2 -= gvdAngleGapCalcandDynamixelRad;

P1.fill, P2.fill input every joint's position(rad) individually. <u>Differences</u> between DH Configuration's point of origin and actual point of origin are taken into consideration so P1 and P2 are to be adjusted accordingly.

ArmComm.Arm_Set_Position_PID_Gain(64, 0, 0);

Joint's Position P, I, and D gain values.respectively.

ArmComm.Arm_Set_JointVelocity(0);

Joint's velocity value .0 denotes max velocity.

ArmComm.Arm_Set_JointAcceleration(0);

Joint's acceleration value .0 denotes max velocity.

ArmTrajectory.ClearMF();

MotionProfile clears the set space.

ArmTrajectory.Set_P2P(P1, P2, 10.0, 0.5);

sets P1, P2(Start, EndPose). In this case P1 is 0.0 rad and P2 is 0.5 rad. Trajectory is from P1 to P2

ArmTrajectory.Set_P2P(P2, P1, 10.0, 0.5);

sets P1, P2(Start, EndPose). In this case P1 is 0.0 rad and P2 is 0.5 rad. Trajectory is from P2 to P1

MotionPlayer.All_Info_Reload();

MotionProfile calls Info(Robot, Kinematics, Trajectory).

MoionPlayer.Initialize();

MotionProfile, Step, are initialized.

MotionPlayer.Set_Time_Period(DEFAULT_Ctrl_TIME_PERIOD);

sets time period. For value lesser than 0 then a default value (=8) gets inputted.

3.3 SimpleIK

 \triangle Use of this example may pose safety risks. When testing the example keep a safe distance while able to cut power off in case of undesired operation.

Allows operation of end effector's pose via position(X, Y, Z) and orientation(Roll, Pitch, Yaw). The keys for SimpleIK are q, w, e, r, t, y and a, s, d, f, g, h.

Control	Position -> +5mm	Position -> -5mm
EndEffector	orientation -> + $(3 \times \frac{\pi}{180})$ rad	orientation -> - $(3 \times \frac{\pi}{180})$ rad
Position X	q	a
Position Y	W	S
Position Z	e	d
Orientation Roll	r	f
Orientation Pitch	t	g
Orientation Yaw	У	h

- EndEffector Pose table

i) How to Use SimpleIK

ROBOTIS

To start SimpleIK start a new project just like SimplePtoP. Then press the Ctrl + F5 ekys to begin.

Input COM port number : 7 Input baud number : 1 Succeed to open USB2Dynamixe1 Press any key to move first pose

In SimpleIK you will be asked for COM port and baud rate numbers. If succeeded you will see a 'Succeed to open USB2Dynamixel' followed by 'Press any key to move first pose.' Press a key to begin. The arm moves to its initial pose as shown below.

* III

.

=

```
Input COM port number : 7
Input baud number : 1
Succeed to open USB2Dynamixel
Press any key to move first pose
move to first pose
CurrentPose
-4.23677
6.496e-009
411.529
-3.1409
-1.5708
-0.000695224
CurrentPose
-1.53325e-009
     -2.24304
    -0.113151
 5.50717e-010
     0.785398
            Й
Demonstration Start
```

This windows pops up after the arms moves to its initial pose. The values printed are the joints' angles(rad). Press the keys(ex : q, w....) to move the end effector.

```
Answer
                                                                                      .
 1.60557e-008
     -2.23096
                                                                                      ш
    -0.113022
 2.49533e-008
     0.773196
  1.5934e-008
Answer
 1.84708e-009
     -2.21869
    -0.113265
 4.84405e-009
     0.761185
-7.41367e-009
Answer
 9.88268e-010
     -2.20624
     -0.11388
 6.25259e-009
     0.749368
 -8.50075e-009
```

SimpleIK q key control the 3rd value.

Q controls the end effector position (X) by increasing delta(5mm)amounts.

Visually verify arm movement every time when changing position.

Answer	
-2.53639e-006	
-2.20624	
-0.11388	
0.000437539	
0.749365	E
0.0518977	
Answer	
-5.07326e-006	
-2.20624	
-0.11388	
0.000874298	
0.749346	
0.103796	
Answer	
-7.61084e-006	
-2.20624	
-0.11388	
0.00130914	
0.749311	
0.155695	
	-

ROBOTIS

Press the q and r keys 3 times each. The r key controls the end effector's roll. The orientation (Roll, Pitch, Yaw) change by $(3 \times \frac{\pi}{180})$ rad per keystroke.

Visually verify arm movement every time when changing position.

ii) SimpleIK Source Description

```
if(temp == 'q') {
  DesiredPose = CurrentPose;
  DesiredPose.x += delta;
 ArmKinematics.ComputelK(DesiredPose, &angle_rad, angle_rad, &ErrorStatus);
  if(ErrorStatus == ARMSDK_NO_ERROR)
 {
    cout<<"Answer"<<endl;
    cout<<angle_rad<<endl<
    ArmComm.Arm_Set_JointPosition(RobotisArm.Rad2Value(angle_rad +
                                                    gvdAngleGapCalcandDynamixelRad));
 }
  else if(ErrorStatus & ARMSDK_ACCEPTABLE_ERROR)
 {
    cout<< "No IK solution"<<endl;
    cout<< "But the calcuation result is acceptable"<<endl;
    char answer;
    while(true)
    {
      cout<< "Do you want make the Robot move? (Y/N)"
      cin >> answer;
      if((answer == 'y') || (answer == 'n') || (answer == 'Y') || (answer == 'N'))
        break
      else
        cout<< "Invaild Answer"<<endl;
    }
    if((answer == 'y') || (answer == 'Y') )
      ArmComm.Arm_Set_JointPosition(RobotisArm.Rad2Value(angle_rad +
                                                gvdAngleGapCalcandDynamixelRad));
    else
      continue
 }
 else {
    cout<< "No IK Solution"<<endl;
    continue
 }
  ArmKinematics.Forward(angle_rad, &CurrentPose);
}
```

The code shows that by pressing the q key the program runs. A press of q moves the end effector pose in the (X) coordinate by delta (5mm).

If there are no errors the end effector will move according to keystroke. All joints are in radians.

Press the 'q' key to to goal pose by X position in delta increments.

Despite having errors and not being able to get the IK moving can be allowed. If 'Do you want make the Robot move? (Y/N)' appears onscreen press the y key to move the end effector in the X coordinate by +5mm. Then the joints pose(rad) are displayed.

⚠ Product may go to pose fast after pressing the Y key posing a safety risk. When testing the example keep a safe distance while able to cut power off in case of undesired operation

When error is too large and IK is unrealizable 'No IK Solution' will be displayed the end effector will remain as is.

The sample code from above is broken down below.

ArmKinematics.ComputelK(DesiredPose, &angle_rad, angle_rad, &ErrorStatus);

All joints set to a desired pose by taking input from DesiredPose and angle_rad. <u>Once DesiredPose values go to CurrentPose then the arm moves in X</u> <u>coordinate and DesirePose gets set again.</u> angle_rad is CurrentPose's consistent joints angles. IK's solution for desired pose joint angles and &angle_rad get set. &ErrorStatus is the error sent to Dynamixel.

ArmComm.Arm_Set_JointPosition(RobotisArm.Rad2Value(angle_rad + gvdAngleGapCalcandDynamixelRad));

The ComputeIK function sets an array for joint position in &angle_rad.

ArmKinematics.Forward(angle_rad, &CurrentPose);

Once moved to desired pose angle_rad(array) gets the end effector's pose and runs forward kinematics; then CurrentPose sets the pose. This function returns the end effectors transform matric (4x4).

```
ROBOTIS
```

```
else if(temp == 'r')
{
  DesiredPose = CurrentPose;
  matd DesiredRotation = Algebra::GetOrientationMatrix(delta_angle_rad, 0.0, 0.0) *
  Algebra::GetOrientationMatrix(CurrentPose.Roll, CurrentPose.Pitch, CurrentPose.Yaw);
  vecd DesiredRPY = Algebra::GetEulerRollPitchYaw(DesiredRotation);
  DesiredPose.Roll = DesiredRPY(0);
  DesiredPose.Pitch = DesiredRPY(1);
  DesiredPose.Yaw = DesiredRPY(2);
  ArmKinematics.ComputelK(DesiredPose, &angle_rad, angle_rad, &ErrorStatus);
  if(ErrorStatus == ARMSDK_NO_ERROR)
  {
    cout<<"Answer"<<endl;
    cout<<angle_rad<<endl<<endl;
    ArmComm.Arm_Set_JointPosition(RobotisArm.Rad2Value(angle_rad +
                                                gvdAngleGapCalcandDynamixelRad));
  }
  else if(ErrorStatus & ARMSDK_ACCEPTABLE_ERROR)
  {
    cout<< "No IK solution"<<endl;
    cout<< "But the caluation result is acceptable"<<endl;
    char answer;
    while(true)
    {
      cout<< "Do you want make the Robot move? (Y/N)"
      cin >> answer;
      if((answer == 'y') || (answer == 'n') || (answer == 'Y') || (answer == 'N'))
        break;
      else
        cout<< "Invaild Answer"<<endl;
  }
    If((answer == 'y') || (answer == 'Y') )
    ArmComm.Arm_Set_JointPosition(RobotisArm.Rad2Value(angle_rad +
                                                 gvdAngleGapCalcandDynamixelRad));
    else
      continue;
  }
  else {
    cout<< "No IK Solution"<<endl;
    continue;
  }
  ArmKinematics.Forward(angle_rad, &CurrentPose);
}
```

The goal pose runs IK my moving the roll gets increased by delta(rad). The end effector moves to whatever the IK has solved and displays the joint poses(rad).

Despite having errors and not being able to get the IK moving can be allowed. If 'Do you want make the Robot move? (Y/N)' appears onscreen press the y key to turn the end effector in the roll axis by delta_angle_rad. Then the joints pose(rad) are displayed.

A roll (roll-only) delta is (delta_angle_rad = $3 \times \frac{\pi}{180}$ rad)

When error is too large and IK is unrealizable 'No IK Solution' will be displayed the end effector will remain as is.

The sample code from above is broken down below. Press the r key to move the roll by delta_angle_rad.

The desired rotation matrix can then be obtain with the following

$$R_{desired} = R(\Delta \phi, 0.0, 0.0)^* R_{current}$$

Where the code is shown below.

matd DesiredRotation = Algebra::GetOrientationMatrix	
(delta_angle_rad, 0.0, 0.0)	
*Algebra::GetOrientationMatrix(CurrentPose.Roll,	
CurrentPose.Pitch,	
CurrentPose.Yaw);	

The CurrentPose's Orientation roll increase by delta_angle_rad GoalPose(DesiredRotation).

vecd DesiredRPY = Algebra::GetEulerRollPitchYaw(DesiredRotation);	
DesiredRotation's roll, pitch, and yaw.	

3.4 SimpleTorqueOnOffandFK

Turns the manipulator joints' torque on/off. When torque goes off \rightarrow on Forward Kinematics runs and putputs all joints pose(rad) and end effector's position and orientation.

i) How to Use SimpleTorqueOnOffandFK

To start SimpleTorqueOnOffandFK start a new project just like SimplePtoP. Then press the Ctrl+F5 keys to begin.SimpleTorqueOnOffandFK.

```
Input COM port number : 7
Input baud number : 1
Succeed to open USB2Dynamixel
```

*	
Ξ	
-	

=

Input the COM port and baud rate numbers. If succeeded you will see a 'Succeed to open USB2Dynamixel;' then torque gets turned off. Press the Enter key turn torque on and the arm's joints pose(rad) and end effector's pose(rad) will be displayed (joints 1 through 6).

Jointf	Angle is
-0.5	514395
-0.4	412971
-0.7	730969
0.005	553221
-0.5	785279
-0.002	219265
Angle	of Dynamixel is
-0.5	514395
1.	.04467
0.1	167581
0.005	553221
-0.7	785279
-0.002	219265
EndEff	fector's Pose is
×	= 427.133
y	= -241.391
z	= 27.1234
roll	= -0.00850204
pitch	= -1.21237
yaw	= 2.6321

.

ш

```
-0.514395
  -0.412971
  -0.730969
 0.00553221
  -0.785279
-0.00219265
Angle of Dynamixel is
-0.514395
   1.04467
   0.167581
 0.00553221
  -0.785279
-0.00219265
EndEffector's Pose is
      = 427.133
×
      = -241.391
y
      = 27.1234
z
roll = -0.00850204
pitch = -1.21237
     = 2.6321
yaw
```

Torque Off

Press Enter again to turn torque off and it will display 'Torque Off.'

Press the Enter key once again to turn torque on and the values be displayed again.

ROBOTIS

```
ii) SimpleTorqueOnOffandFK Source Description
```

```
while(true) {
  char temp = _getch();
  if(temp == 27)
    break
  else if(temp == 13) {
    if(gbArmTorque) {
      ArmComm.Arm_Torque_Off();
      std::cout<<"Torque Off"<<std::endl;
      gbArmTorque = false
    }
    else
          {
      ArmComm.Arm_Torque_On();
      cout<<"Torque On"<<endl;
      if(ArmComm.Arm_Get_JointPosition(&angle_unit) != COMM_RXSUCCESS) {
        printf("Communication Error Occurred\n");
     }
      cout<<"JointAngle is"<<endl;
      angle_rad = RobotisArm.Value2Rad(angle_unit);
      cout<< angle_rad - gvdAngleGapCalcandDynamixelRad <<endl<<endl;
      cout<<"Angle of Dynamixel is"<<endl;
      angle_rad = RobotisArm.Value2Rad(angle_unit);
      cout<< angle_rad <<endl<<endl;
      cout<<"EndEffector's Pose is"<<endl;
      Pose3D CurrentPose;
      ArmKinematics.Forward(angle_rad
                             - gvdAngleGapCalcandDynamixelRad, &CurrentPose);
      cout<<"x = "<< CurrentPose.x <<endl;
      cout<<"y = "<< CurrentPose.y <<endl;
      cout<<"z = "<< CurrentPose.z <<endl;
      cout<<"roll = "<< CurrentPose.Roll <<endl;
      cout<<"pitch = "<< CurrentPose.Pitch <<endl;
      cout<<"yaw = "<< CurrentPose.Yaw <<endl<<endl;
      gbArmTorque = true
    }
  }
  else
    continue
}
```

The program aborts without starting by pressing the Esc key.

While the program is running press the Enter key to toggle torque between

on and off, When torque gets turned on the joints and end effector pose get outputted onscreen. This happens with every "on" state.

Press the Esc key then Enter key and the arm remains as is.

The sample code from above is broken down below. The joint angles and Dynamixel angles may not be the same so it must be taken into consideration. Angle of Dynamixel is the output of the actual angle of Dynamixel.

4. Robotis Manipulator SDK Programming

4.1 Robotis Manipulator SDK FlowChart

4.2 Description for Robotis Maniupulator SDK

i) RobotInfo

When making them anipulator's build RobotInfo class's Addjoint generated instance. AddJoint gets values from D-H Parameter and actuator's max and min turn angle in rad and value as well as actuator ID number (min and max turn angles may not be the same as joint angle limits).

ii) Kinematics

Forward Kinematics(FK), Inverse Kinematics(IK) can be calculated once the instance for kinematics class is generated. Kinematics class get the instance from RobotInfo class.

ComputeIK's factor's the pose from end effector and joint values, as well as, initial joint angle and error for IK. The result is joint angles when the returned error status is not 0 then the IK is not properly solved.

armsdk::RobotInfo_robot;											
robot.AddJoint(🗆	robot.AddJoint(0.0, -ML_PI_2, 0.0, 0.0, ML_PI, -ML_PI, 251000, -251000, ML_PI, -ML_PI, 1);										
robot.AddJoint(🗆	0.0,	ML_PI_2,	0.0,	0.0,	ML_PI,	-ML_PI,	251000,	-251000,	ML_PI,	-ML_PI,	2);
robot.AddJoint(3	0.0,	ML_PI_2,	246.0,	0.0,	ML_PI,	-ML_PI,	251000,	-251000,	ML_PI,	-ML_PI,	3);
robot.AddJoint(-3	0.0,	-ML_PI_2,	0.0,	-ML_PI_2,	ML_PI,	-ML_PI,	251000,	-251000,	ML_PI,	-ML_PI,	4);
robot.AddJoint(🗆	0.0,	ML_PI_2,	216.0,	0.0,	ML_PI,	-ML_PI,	151875,	-151875,	ML_PI,	-ML_PI,	5);
robot.AddJoint(0.0,	0.0,	0.0,	0.0,	ML_PI,	-ML_PI,	151875,	-151875,	ML_PI,	-ML_PI,	6);
Kinematics kin(&r	obot));									
vecd JointAngle =	*kin	GetCurren	tAngle();							
armsdk::Pose3D De	sired	IPose;									
DesiredPose.x	= 20	0.0;									
DesiredPose.y	= 0.	0;									
DesiredPose.z	= 40	10.0;									
DesiredPose.Roll	= ML	_P1/2;									
DesiredPose.Pitch	= -M	IL_P1/2;									
DesiredPose.Yaw	= 0.	0;									
int Error:											
<pre>kin.ComputelK(DesiredPose, &JointAngle, JointAngle, &Error);</pre>											

The $Roll(\phi)$, $Pitch(\theta)$, and $Yaw(\psi)$ are calculated as $R_x(\psi) R_y(\theta) R_x(\phi)$ in the rotation transformation matrix. This is to be taken into consideration when entering the pose for ComputeIK.

iii) Trajectory Generating

The TrajectoryGenerator class generates an instance for the arm's trajectory. The SDK's Point to Point, Linear, and Circular can generate a trajectory. For arm-only trajectory then only Set_PTP, Set_LIN, Set_Circular; for the gripper then Set_PTPwithHand, Set_LINwithHand, Set_CIRCwithHand.

iv) Velocity Profile

ROBOTS

The SDK's Velocity Profile does not take max velocity and max acceleration into consideration in the Trapezoidal Velocity Profile. The initial and final velocity are always set to 0. The following methods generate velocity profile in Joint Space and Cartesian Space, where both are independent of each other.

v) Set_PTP

The Set_PTP function determines 2 poses for the manipulator (initial and final) by factoring in Trapezoidal Velocity Profile and receives velocity time and total time. Initial and final pose are in rad and joint angle in mm or rad (x, y, z, roll, pitch, yaw). When generating the trajectory it is recommended to factor in joint angles.

vi) Set_LIN

The Set_LIN function generates a 3-point coordinates for the robot's straight trajectory. This factors in initial and final pose for Linear Euler Interpolation for orientation.

vii) Set_CIRC

ROBOTIS

The Set_CIRC function generates a 3-point coordinates for the robot's circular trajectory. This factors in initial and final pose. It sets a point of origin in the area and proceeds to trajectory via MotionPlay and vector generation.

viii) Trajectory Following

When moving by the generated trajectory from TrajectorGenerator class's instance just use NextStep function from MotionPlay. MotionPlay class accounts trajectoryGenerator class.

The control period from MotionPlay default value is 8ms but can be changed with SetTimePeriod. If TimePeriod is 0 then 8ms default value is applied.

ix) Pro_Arm_Comm_Win

Pro_Arm_Comm_Win utilizes DYNAMIXEL 2.0 Protocol from the Windows version of DYNAMIXEL SDK. Pro_Arm_Comm_Win's functions utilizes DYNAMIXEL Pro's control (i.e. read/write Control Table values). This is useful when writing separate code.

5. Maintenance

ROBOTE

5.1 Restore Firmware

When Dynamixel detection fails ensure is properly wired.

If problems perists **restore Dynamixel firmware** (shown below).

After firmware restoration you will need to set ID and baud rate values again. Always make sure to set USB2Dynamixel switch to "485."

i) restoring firmware

- From Dynamixel Wizard click on the ³ icon to begin.
- select the corresponding COM port number for USB2Dynamixel.

ii) Firmware restore process steps explained.

iii) always connect one Dynamixel at a time.

알림		
반드시 복구할 다이나믹셀 하나만 연결되어 있는지 확인하세요.		
여러 개의 다이나믹셀이 연결되어 있을 경우 복구 과정 중에 정상적인 다이나믹셀에도 문제가 발생할 수 있습니다.		
확인 취소		

iv) pick the COM port number

- with an incorrect number Dynamixel cannot be automatically detected. Always make sure to get the port number right.

- click on Search.

다미나믹셀 펌	웨어 복구	
다미다믹젤	이 연결된 포트를 선택하시고 찾기 버튼을 누르십시오.	
만약 너무 오랜시간 동안 다이나믹셀을 찾지 못한다면		
포트가 잘못설정되어 있거나,		
다른 프로그램에서 해당 포트를 사용 중에 있을 수 있습니다.		
포트 :	COM10 · · · · · · · · · · · · · · · · · · ·	
상태 :	연결 안됨	
2		
	< 이전 다음 > 취소	

v) Disconnect and connect Dynamixel

- The Next button should become clickable

다미나믹셀 펌웨어 복구				
복구할 다이나믹셀을 껐다가 켜십시오.				
반드시 하나의 다이나믹셀만 연결되어 있어야 합니다.				
포트 :	COM10	*	찾기	
상태 :	연결 안됨			
	< C)전 [[[다음 > 취소	

•

vi) Upon successful detection the Next button is clickable

다미나믹셀 펌웨어 복구				
티아나 미생 여겨야 하이되어 소나다.				
니아니ㅋ곧				
포트 :	COM10 ×			
상태 :	연결됨!!			
	≪ 이전 다음> 취소			

vii) Pick the right model

- pick the right type from the list. If not it may result in problems

다이나티셀 영위어 복구	다이나믹설 영원에 복구
백구발 침액어를 선택하세요. 지-300 R-Array R-Array R-Array R-Array R-Array H42-20-5300-R H42-20-5300-R H42-20-5300-R H42-20-5300-R H42-20-5300-R H2-10-530-	백구함 중위어를 선택하세요. 22-300 IFA-Aray FSR H4-200-5500-R H4-200-570-8 H4-200-570-R H4-200-570-
알림 선택한 컴웨어가 복구하려는 다이나믹셀의 펌웨어가 맞는지 다시 한 번 확인하세요!	
<u>확인</u> 취소	

viii) during restoration

- while restoring the LED will blink. Do not cut power off during this stage.

다이나믹셀 펌웨어 복구	다이나믹셀 펌웨어 복구
다이나믹셀 펌웨어가 설치되고 있습니다. 완료될 때까지 전원을 끄거나 케이블을 뽑지 마세요.	다이나믹셀 펌웨어가 설치되고 있습니다. 완료될 때까지 전원을 끄거나 케이블을 뽑지 마세요.
모델 : H54-200-S500-R 버젼 : 18 100% (42889/42889 bytes)	모델 : H54-200-S500-R 버젼 : 18 84% (36096/42889 bytes)
< 이전 다음 > 취소	< 미전 다음 > 취소
다이나믹셀 펌웨어 복구	
축하합니다! 다이나믹셀 펌웨어 복구를 성공적으로 완료하였습니다.	
< 이전 다음 > 마침	

All Control Table settings are set to default values.
6. Reference

ROBOTIS

6.1 ARMSDK_Definitions

(1) Pose3D

Data Fields	double x, y, z double Roll, Pitch, Yaw
Description	Position(x,y,z) and Orientation(Roll, Pitch, Yaw) elements

(2) timeprofile

Data Fields	double ta, tc, td, totaltime double a0[3], a1[3], a2[3] double distance, distance1 int Method
Description	Trapezoidal Velocity Profile's elements distance1 only used in circular trajectory.

(3) MotionPose

Data Fields	vecd StartPose, EndPose Pose3D StartPose3D, ViaPose3D, EndPose3D Position3D CenterPosition int Method
Description	Declaration of manipulator step's StartPose, EndPose and trajectory method ViaPose and CenterPosition for circular trajectory

6.2 ARMSDK_Math.h

(1) static matd GetOrientationMatrix(double Roll, double Pitch, double Yaw)

Parameter	double Roll, double Pitch, double Yaw
Returns	3 x 3 Rotation Matrix
Description	orientation(Roll, Pitch, Yaw) input 3 x 3 orientation matrix output

(2) static matd GetTransformMatrix(double Roll, double Pitch, double Yaw,

double x, double y, double z)

Parameter	double Roll, double Pitch, double Yaw double x, double y, double z
Returns	4 x 4 Transformation Matrix
Description	orientation(Roll, Pitch, Yaw)와 Position(X, Y, Z) input 4 x 4 transform Matrix output

(3) static vecd rot2omega(mat3d Rerr)

Parameter	Rotation Matrix
Returns	angular velocity array
Description	rotation matrix gets input and outputs velocity array

(4) static vecd ConvertRad2Deg(vecd q)

Parameter	radian Array
Returns	Degree Array
Description	(rad) gets input, change to (value) and return

(5) static vecd GetEulerRollPitchYaw(matd T)

Parameter	3 x 3 rotation Matrix or 4 x 4 Transformation Matrix
Returns	$3 \times 1 \text{ array (Roll, Pitch, Yaw)}^2$
Description	vecd rpy(3); rpy(0) = $atan2(T(2,1), T(2,2))$; rpy(1) = $atan2(-T(2,0), sqrt(T(2,1)*T(2,1) + T(2,2)*T(2,2)))$; rpy(2) = $atan2(T(1,0), T(0,0))$;

6.3 MotionEngine

ROBOTIS

i) Error.h

(1) void ErrorCheck(int Error)

Parameter	int Error
Return	void
	1. no error
Description	(ARMSDK_NO_ERROR 0x00)
	2. IK solution does not exist
	(ARMSDK_NO_IK_SOLUTION 0x01)
	3. no IK solution and allowable error
	(ARMSDK_ACCEPTABLE_ERROR 0x02)
	4. Joints' next and previous step large difference in angle
	(ARMSDK_TOO_MUCH_ANGLE_CHANGE 0x04)
	5. angle or not within JointData's limit
	(ARMSDK_OUT_OF_JOINT_RANGE 0x08)
	The 5 types of ERROR

ii) JointData.h

(1) void SetJointID(unsigned int ID)

Parameter	unsigned int ID
Return	void
Description	Assign Joint ID

(2) void SetJointAngle(double JointAngle);

Parameter	double JointAngle
Return	void
Description	Set Joint Angle

(3) void SetMinAngleInRad(double MinAngleInRad);

Parameter	double MinAngleInRad
Return	void
Description	Set actuator min angle(rad) Value utilized in 6.3 MotionEngine - iii) RobotInfo's rad2value function

(4) void SetMaxAngleInRad(double MaxAngleInRad);

Parameter	double MaxAngleInRad
Return	Void
Description	Set actuator max angle(rad) Value utilized in 6.3 MotionEngine - iii) RobotInfo's rad2value function

(5) void SetMinAngleInValue(int Min_AngleValue);

Parameter	int Min_AngleValue
Return	void
Description	Set actuator min value utilized in 6.3 MotionEngine - iii) RobotInfo's rad2value, value2rad functions

(6) void SetMaxAngleInValue(int Max_AngleValue);

Parameter	int Max_AngleValue
Return	void
	Set actuator max value
Description	Utilized in 6.3 MotionEngine - iii) RobotInfo's rad2value, value2rad functions

(7) void SetMinAngleLimitInRad(double MinAngleLimitInRad);

Parameter	double MinAngleLimitInRad
Return	void
Description	Set joint min angle(rad)
	Also sets the value

(8) void SetMaxAngleLimitInRad(double MaxAngleLimitInRad);

Parameter	double MaxAngleLimitInRad
Return	void
Description	Set joint max angle(rad)
	Also sets the value

(9) unsigned int GetID(void);

Parameter	void
Return	unsigned int (ID)
Description	Returns joint ID (number)

(10) void SetJointDataDH(double LinkLength, double LinkTwist,

double JointOffset, double JointAngle);

Parameter	double LinkLength, double LinkTwist double JointOffset, double JointAngle
Return	void
Description	Set manipulator's joint DH parameters in DH Configuration

(11) double GetJointAngle(void);

Parameter	void
Return	double current Angle
Description	Returns joint angle limit(rad)

(12) double GetMinAngleInRad(void);

Parameter	void
Return	MinAngle(rad) of Actuator
Description	SetMinAngleInRad returns actuator min angle(rad)

(13) double GetMaxAngleInRad(void);

Parameter	void
Return	MaxAngle(rad) of Actuator
Description	SetMaxAngleInRad returns actuator max angle(rad)

(14) int GetMinAngleInValue(void);

Parameter	void
Return	MinAngle(value) of Actuator
Description	SetMinAngleInValue returns actuator min angle(value)

(15) int GetMaxAngleInValue(void);

Parameter	void
Return	MaxAngle(value) of Actuator
Description	SetMaxAngleInValue returns actuator max angle(value)

(16) double GetMinAngleLimitInRad(void);

Parameter	Void
Return	MinAngle(rad) of Joint
Description	SetMinAngleLimitInRad returns joint min angle(rad)

(17) double GetMaxAngleLimitInRad(void);

Parameter	void
Return	MaxAngle(rad) of Joint
Description	SetMaxAngleLimitInRad returns joint max angle(rad)

(18) int GetMinAngleLimitInValue(void);

Parameter	void
Return	MinAngle(value) of Joint
Description	SetMinAngleLimitInRad returns joint min angle(value)

(19) int GetMaxAngleLimitInValue(void);

Parameter	void
Return	MaxAngle(value) of Joint
Description	SetMaxAngleLimitInRad returns joint max angle(value)

(20) matd GetTransformMatirx(void);

Parameter	void
Return	matd TransformMatrix of each Link
Description	returns transform matrix for each link

iii) RobotInfo.h

(1) int AddJoint (double LinkLength, double LinkTwist, double JointOffset,

double JointAngle, double MaxAngleInRad, double MinAngleInRad,

int MaxAngleValue , int MinAngleValue,

double MaxAngleLimitInRad, double MinAngleLimitInRad,

unsigned int Dynamixel_ID);

Parameter	LinkLength, LinkTwist, JointOffset, JointAngle – DH parameter MaxAngleInRad - Maximum Angle of Actuator(not Joint Limit) MinAngleInRad – Minimum Angle of Actuator(not Joint Limit) MaxAngleInValue – AngleValue corresponding to the Maxangle MinAngleInValue – AngleValie corresponding to the Minangle MaxAngleLimitInRad – Maximum Joint Angle Limit of Actuator MinAngleLimitInRad – Minimum Joint Angle Limit of Actuator
Return	Error Value
Description	Sets joint's DH-Parameter and Joint-Parameter values Error of 0 is no error and 1 when there is error. Error happens when min value is greater than max value

(2) JointData GetJointInfo(int joint_number);

Parameter	int Joint_number
Return	JointData
Description	Returns JointData from AddJoint

(3) std::vector<JointData>* GetRobotInfo(void);

Parameter	JointData
Return	address of robotInfo
Description	Returns address values from RobotInfomation

(4) void ClearRobotInfo(void);

Parameter	void
Return	void
Description	Clears out RobotInfo

(6) veci Rad2Value(vecd q);

ROBOTIS

Parameter	double array of Actuators Angle(Rad)
Return	int array of Actuators Angle(Value)
Description	Transforms joint's rad to value.

(7) vecd Value2Rad(veci q);

Parameter	int array of Actuators Angle(Value)
Return	double array of Actuators Angle(Rad)
Description	Transforms joint's value to rad.

iv) Kinematics.h

(1) void RobotInfoReload(void);

Parameter	void
Return	void
Description	Calls RobotInfo

(2) matd Forward(vecd angle);

Parameter	Angle of All Joints(rad)	
Return	4x4 TransformMatrix form	
Description	RobotInfoReload calls joints angles runs FK and returns end effector's transformation matrix	

(3) matd Forward(vecd angle, Pose3D *pose);

Parameter	Angle of All Joints(rad)
Return	4x4 EndEffector's TransformMatrix form
Description	RobotInfoReload calls joint angles runs FK and returns end effector's transformation matrix. It also sets pose pointer (*pose)

(4) void SetMaximumNumberOfIterationsForIK(unsigned int max_num);

Parameter	unsigned int max_num for IK
Return	void
Description	Sets IK's number of iterations for solution

(5) void SetConvergenceCondition(double max_error, double max_acceptable_error);

Parameter	double max_error, double max_acceptable_error	
Return	void	
	IK's amount of telorable error.	
	The first input value is max convergence error. A lesser value	
Description	than max can allow solution.	
	The second value is max allowable error; acceptable as long as is lower than value entered. When value exceeds then there is no solution	

(6) matd Jacobian(void);

Parameter	void	
Return	Matrix of Jacobian	
Description	Returns jacobian for IK solution	

(7) vecd CalcError(Pose3D _desired, matd _current);

Parameter	Pose3D goalPose, TransformMatrix of EndEffector	
Return	Error between Goal and Currnet Pose	
Description	Compares end effector's goal pose and current pose	

(8) void ComputeIK(Pose3D _desired , vecd *q_rad,

vecd	Initangle	rad.	int	*ErrorStatus	;):
		,			

Parameter	Pose3D goalPose, vecd initangle, int ErrorStatus	
Return	void	
Description	get jacobian's Damped Least Square Method for IK solution _desired is end effector's desired pose *q_rad sets joints pose after running IK Initangle_rad is joint angles prior to running IK *ErrorStatus is pointer for error type ErrorStatus. 1. no error (ARMSDK_NO_ERROR 0x00) 2. No solution from IK (ARMSDK_NO_IK_SOLUTION 0x01) 3. no solution from IK, allowable error (ARMSDK_ACCEPTABLE_ERROR 0x02) 4. joint angles exceed JointData's set angles (ARMSDK_OUT_OFF_JOINT_RANGE 0x08)	

v) TrajectoryGenerator.h

(1) void KinematicsInfoReload(void);

Parameter	void
Return	void
Description	Calls Kinematics info

(2) void Set_P2P(vecd StartPose, vecd EndPose,

double TotalTime, double AccelTime)

Parameter	vecd StartPose / vecd EndPose double TotalTime / double AccelTime
Returns	void
Description	sets P2P trajectory fromStartPose, EndPose, TotalTime, AccelTime

(3) void Set_P2P(Pose3D StartPose, Pose3D EndPose,

double TotalTime, double AccelTime)

Parameter	Pose3D StartPose / Pose3D EndPose double TotalTime / double AccelTime
Returns	Void
Description	Sets P2P trajectory from StartPose, EndPose, TotalTime, AccelTime

(4) void Set_LIN(vecd StartPose, vecd EndPose,

double TotalTime, double AccelTime)

Parameter	vecd StartPose / vecd EndPose double TotalTime / double AccelTime	
Returns	void	
Description	Sets linear trajectory from StartPose, EndPose, TotalTime, AccelTime	

(5) void Set_LIN(Pose3D StartPose, Pose3D EndPose,

double TotalTime, double AccelTime)

Parameter	Pose3D StartPose / Pose3D EndPose double TotalTime / double AccelTime
Returns	void
Description	Sets linear trajectory from StartPose, EndPose, TotalTime, AccelTime.

(6) void Set_CIRC(vecd StartPose, vecd ViaPose, vecd EndPose,

double TotalTime, double AccelTime)

Parameter	vecd StartPose / vecd ViaPose / vecd EndPose double TotalTime / double AccelTime
Returns	void
Description	Sets circular trajectory from StartPose, ViaPose, EndPose, TotalTime, AccelTime.

(7) void Set_CIRC(Pose3D StartPose, Pose3D ViaPose, Pose3D EndPose,

double TotalTime, double AccelTime)

Parameter	Pose3D StartPose / Pose3D EndPose double TotalTime / double AccelTime
Returns	void
Description	Sets circular trajectory fom StartPose, ViaPose, EndPose, TotalTime, AccelTime

(8) void Set_P2PwithHand(vecd StartPose, vecd EndPose,

veci Hand1, veci Hand2,

double TotalTime, double AccelTime)

Parameter	vecd StartPose / vecd EndPose veci Hand1 / veci Hand2 double TotalTime / double AccelTime
Returns	void
Description	Sets P2P trajectory from StartPose, EndPose, Start HandPose, End HandPose, TotalTime, AccelTime

(9) void Set_P2PwithHand(Pose3D StartPose, Pose3D EndPose,

	veci Hand1,	veci Hand2,
	double TotalTime,	double AccelTime)
Parameter	Pose3D StartPose / Pose3D Er veci Hand1 / veci Hand2 double TotalTime / double Acc	ndPose celTime
Returns	void	
Description	Sets P2P trajectory from Start End HandPose, TotalTime, Act	Pose, EndPose, Start HandPose, celTime

(10) void Set_LINwithHand(vecd StartPose, vecd EndPose,

veci Hand1, veci Hand2,

double TotalTime, double AccelTime)

Parameter	vecd StartPose / vecd EndPose veci Hand1 / veci Hand2 double TotalTime / double AccelTime
Returns	void
Description	Sets linear trajectory from StartPose, EndPose, Start HandPose, End HandPose, TotalTime, AccelTime.

(11) void Set_LINwithHand(Pose3D StartPose, Pose3D EndPose,

veci Hand1,	veci Hand2,
double TotalTime,	double AccelTime)

Parameter	Pose3D StartPose / Pose3D EndPose veci Hand1 / veci Hand2 double TotalTime / double AccelTime
Returns	void
Description	Sets linear trajectory from StartPose, EndPose, Start HandPose, End HandPose, TotalTime, AccelTime

(12) void Set_CIRCwithHand(vecd StartPose, vecd ViaPose, vecd EndPose,

veci Hand1,

double TotalTime, double AccelTime)

veci Hand2,

Parameter	vecd StartPose / vecd EndPose / vecd ViaPose veci Hand1 / veci Hand2 double TotalTime / double AccelTime
Returns	void
Description	Sets circular trajectory from StartPose, ViaPose, EndPose, Start HandPose, End HandPose, TotalTime, AccelTime

(13) void Set_CIRCwithHand(Pose3D StartPose, Pose3D ViaPose,

Pose3D EndPose,

veci Hand1, veci Hand2,

double TotalTime, double AccelTime)

Parameter	Pose3D StartPose / Pose3D ViaPose / Pose3D EndPose veci Hand1 / veci Hand2 double TotalTime / double AccelTime
Returns	void
Description	Sets circular trajectory from StartPose, ViaPose, EndPose, Start HandPose, End HandPose, TotalTime, AccelTime

(14) void ClearMF(void)

Parameter	void
Returns	void
Description	Clears out motion profile

(15) double GetMotionTotalTime(void)

Parameter	void
Returns	TotalTime in sec
Description	Returns motion run time

vi) MotionPlay.h

ROBOTIS

(1) void All_Info_Reload(void);

Parameter	void
Returns	void
Description	Calls motion's Info(RobotInfo, Kinematics, Trajectory)

(2) void initialize(void)

Parameter	void
Returns	void
Description	Initializes motion profile, done time, step, current time

(3) void Set_Time_Period(int MilliSecond)

Parameter	int MilliSecond
Returns	void
Description	Provides period time for motion

(4) vecd NextStepAtTime(double CurrentTime, int *ErrorStatus)

Parameter	double CurrentTime int *ErrorStatus
Returns	Joint Angle of next Step
Description	Returns next Goal Joint Angle array
	*ErrorStatus is pointer for error type

(5) veci NextStepAtTimeforHand(double CurrentTime)

Parameter	CurrentTime - current time in sec
Returns	Angle Value array of Fingers for next step
Description	Returns following Goal Joint Angle array for hand
	Assumes hand is attached to arm

Parameter	Pose3D desiredPose / int * ErrorStatus
Returns	Joint Angle of desiredPose
Description	Returns desired pose of end effector via IK *ErrorStatus is pointer for error type 1. no error (ARMSDK_NO_ERROR 0x00) 2. No solution from IK (ARMSDK_NO_IK_SOLUTION 0x01) 3. no solution from IK, allowable error (ARMSDK_ACCEPTABLE_ERROR 0x02) 4. joint angles exceed JointData's set angles (ARMSDK_OUT_OFF_JOINT_RANGE 0x08)

(7) vecd NextStep(int* ErrorStatus)

Parameter	ErrorStatus
Returns	Angle rad array for next step
Description	Returns next motion's joint angles
	*ErrorStatus is pointer for error type

(8) veci NextStepforHand(void)

Parameter	void
Returns	Angle Value array of Fingers for next step
Description	Returns hand's next motion position

(9) vecd GetCurrentAngle(void);

Parameter	void
Returns	All Joint Angle(rad)
Description	Returns robot's current pos(rad) array

(10) Pose3D GetCurrentEndPose(void);

Parameter	void
Returns	Pose3D of EndEffector
Description	Returns end effector's current pose

(11) double Get_CurrentTime(void);

Parameter	void
Returns	double CurrentTime
Description	Returns current time

6.4 RobotisLib

i) Pro_Arm_Comm_win.h

(1) void DXL_Set_Init_Param(int portnum, int baudnum);

Parameter	int portnum, int baudnum
Returns	void
Description	Sets Dynamixel comms from portnum and baudnum

(2) int DXL_Open();

Parameter	void
Returns	void
Description	Opens/access comms to DYNAMIXEL_Set_Init_Param

(3) SerialPort* DXL_Get_Port(void);

Parameter	void
Returns	PortNumber
Description	Returns SerialPort pointer address

(4) void DXL_Close(void);

Parameter	void
Returns	void
Description	End communications with Dynamixel

(5) void Arm_ID_Setup(veci Arm_ID_LIST);

Parameter	array of ID List
Returns	void
Description	Sets arm's ID list

(6) int Arm_Torque_On(void);

Parameter	void
Returns	Communication Result
Description	Turn torque on every joint
	COMM_RXSUCCESS return of 1

(7) int Arm_Torque_Off(void);

Parameter	void
Returns	Communication Result
Description	Turns torque off on every joint
	COMM_RXSUCCESS return of 1

(8) int Arm_Set_JointPosition(veci position);

Parameter	joint angle array
Returns	Communication Result
Description	Sets joint angles
	COMM_RXSUCCESS return of 1

(9) int Arm_Set_JointVelocity(veci velocity);

Parameter	int joint velocity array
Returns	Communication Result
Description	Sets joint valocities
	COMM_RXSUCCESS return of 1

(10) int Arm_Set_JointVelocity(int velocity);

Parameter	int joint velocity
Returns	Communication Result
Description	Sets joint velocities
	COMM_RXSUCCESS return of 1

(11) int Arm_Set_JointAcceleration(veci accel);

Parameter	int joint Acceleration array
Returns	Communication Result
Description	Sets joint accelerations
	COMM_RXSUCCESS return of 1

(12) int Arm_Set_JointAcceleration(int accel);

Parameter	int joint Acceleration
Returns	Communication Result
Description	Sets joint accelerations
	COMM_RXSUCCESS return of 1

(13) int Arm_Set_Position_PID_Gain(int P_Gain, int I_Gain, int D_Gain);

Parameter	int joint Position P, I, D gain
Returns	Communication Result
Description	Sets joints' PID gain values
	COMM_RXSUCCESS return of 1

(14) int Arm_Set_Position_PID_Gain(int id, int P_Gain, int I_Gain, int D_Gain,

int* ErrorStatus);

Parameter	int id, int joint Position P, I, D gain
Returns	Communication Result
Description	Sets joints' PID gain values *ErrorStatus is error pointer COMM_RXSUCCESS return of 1

(15) int Arm_Get_JointPosition(veci *position);

Parameter	joint position array
Returns	Communication Result
Description	Access position array and gets joint positions
	COMM_RXSUCCESS return of 1

(16) int Arm_Get_JointCurrent(veci *torque);

Parameter	joint current array
Returns	Communication Result
Description	Reads joint's electrical current flow and saves in (*torque) return pointer
	COMM_RXSUCCESS return of 1

(17) int Arm_LED_On(void);

Parameter	void
Returns	Communication Result
Description	Turns joints' LED on
	COMM_RXSUCCESS return of 1

(18) int Arm_LED_Off(void);

Parameter	void
Returns	Communication Result
Description	Turns joints' LED off
	COMM_RXSUCCESS return of 1

(19) int Arm_LED_On(int r, int g, int b);

Parameter	int r, int g, int b
Returns	Communication Result
	Controls DYNAMIXEL Pro's RGB LED
Description	r, g, b, rage is 0~255 each
	COMM_RXSUCCESS return of 1

(20) int Arm_Red_LED_On(void);

(21) int Arm_Green_LED_On(void);

(22) int Arm_Blue_LED_On(void);

Parameter	void
Returns	Communication Result
Description	(20) turns joints' LED on to red
	(21) turns joints' LED on to green
	(22) turns joints' LED on to blue
	COMM_RXSUCCESS return of 1

(23) void Gripper_ID_Setup(veci Gripper_ID_List);

Parameter	ID array
Returns	void
Description	Sets ID for gripper.

(24) int Gripper_Ping(void);

Parameter	Void
Returns	Communication Result
Description	Pings comm to gripperGripper
	COMM_RXSUCCESS return of 1

(25) int Gripper_Torque_On(void);

Parameter	Void
Returns	Communication Result
Description	Turns gripper torque on
	COMM_RXSUCCESS return of 1

(26) int Gripper_Torque_Off(void);

Parameter	void
Returns	Communication Result
Description	Turns gripper torque off
	COMM_RXSUCCESS return of 1

(27) int Gripper_Get_Joint_Value(veci *value);

Parameter	Joint value array stored in address
Returns	Communication Result
Description	Access gripper's angles from stored address
	COMM_RXSUCCESS return of 1

(28) int Gripper_Set_Joint_Value(veci value);

Parameter	Joint value array
Returns	Communication Result
Description	Sets gripper joint value
	COMM_RXSUCCESS return of 1

6.5 Timer

ROBOTIS

i) MotionTimer.h

time measurement fromQueryPerformanceCounter

(1) void Start(void)

Parameter	void
Returns	void
Description	Sets start time

(2) void Stop(void)

Parameter	void
Returns	void
Description	Stops time measurement

(3) double GetElapsedTime(void)

Parameter	void
Returns	ElapsedTime in milliseconds
Description	Returns time from start to stop

(4) void Wait(double millisec)

Parameter	millisecond - waiting time in milliseconds you want
Returns	void
Description	Waits amount of time(msec) for standby